Department of Mathematics and Statistics
 Indian Institute of Technology Kanpur
 MTH101A, End Semester Examination Grading Scheme
 April 30, 2013

Marks: 100
Time: 3 Hours
Answer all questions. All the parts of each question must be answered in continuation; otherwise they will not be graded.

1. (a) Let the sequence $\left\{x_{n}\right\}_{n=2}^{\infty}$ of real numbers be defined by

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) ; n=1,2, \ldots \text { and } a, x_{1}>0 .
$$

Prove that (i) $\left\{x_{n}\right\}_{n=2}^{\infty}$ is bounded below by \sqrt{a} and (ii) $\left\{x_{n}\right\}_{n=2}^{\infty}$ is non-increasing.
Solution: (i) $2 x_{n+1} x_{n}=x_{n}^{2}+a \geq 2 \sqrt{x_{n}^{2} a}$ (by $A M-G M$ inequality) (2 marks)

$$
\begin{array}{ll}
\left.\Rightarrow x_{n+1} \geq \sqrt{a} \text { for } n=1,2, \ldots \text { (since } x_{n}>0\right) \\
\text { (ii) } x_{n+1}-x_{n}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)-x_{n}=\frac{1}{2}\left(\frac{a-x_{n}^{2}}{x_{n}}\right) \leq 0 \text { (by (i)) } & \text { (3 marks) }
\end{array}
$$

(b) Prove that $P(x)=2 x^{13}+13 x^{2}+26 x+6$ has exactly one real root.

Solution: $P(0)>0, P(-1)<0 \Rightarrow P(x)$ has at least one real root (by IVT)
The function $P^{\prime}(x)=26 x^{12}+26 x+26>0$ for every real x, since it has a positive
minima at $x=-\frac{1}{12^{1 / 11}}$.
$\Rightarrow P(x)$ can have at most one root (by MVT)
$\Rightarrow P(x)$ has exactly one real root.
2. (a) Use Comparison Test to determine whether the improper integral $\int_{0}^{\infty} \frac{1}{x^{2}+\sqrt{x}} d x$ converges or diverges.
Solution: $\int_{0}^{\infty} \frac{1}{x^{2}+\sqrt{x}} d x=\int_{0}^{1} \frac{1}{x^{2}+\sqrt{x}} d x+\int_{1}^{\infty} \frac{1}{x^{2}+\sqrt{x}} d x \equiv I_{1}+I_{2}$
$\frac{1}{x^{2}+\sqrt{x}} \leq \frac{1}{\sqrt{x}}$ and $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$ converges $\Rightarrow I_{1}$ converges (by Comparison Test) (3 marks) $\frac{1}{x^{2}+\sqrt{x}} \leq \frac{1}{x^{2}}$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges $\Rightarrow I_{2}$ converges (by Comparison Test) (3 marks)
(b) Use Limit Comparison Test to determine whether the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{1+(1 / n)}}$ converges or diverges.

Solution: $\lim _{n \rightarrow \infty} \frac{n}{n^{1+(1 / n)}}=1$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. (3+2 marks)

Therefore, by Limit Comparison Test $\sum_{n=1}^{\infty} \frac{1}{n^{1+(1 / n)}}$ diverges.
3. (a) Using Theorem of Pappus, determine the volume of solid generated by revolving an equilateral triangle of side-length a, with its base lying on x-axis, about the line L parallel to its base and intersecting y-axis at the point $(0,-c), c>a$.
Solution: By Pappus Theorem,
Volume of solid generated $=$ Area of Triangle $\times 2 \pi$ (Distance of Centroid of Triangle from L) (2 marks)

$$
=\left(\frac{1}{2} a \times a \sin \frac{\pi}{3}\right) \times 2 \pi\left(c+\frac{a \sin \frac{\pi}{3}}{3}\right)=\frac{\pi a^{2} \sqrt{3}}{2}\left(c+\frac{a \sqrt{3}}{6}\right)
$$

(b) A curved wedge is cut from a cylinder of radius 5 by two planes. One plane is perpendicular to the axis of cylinder. The second plane crosses the first plane at a 60° angle at the center of the cylinder. Find the volume of the wedge.
Solution: Cross-section of wedge by a plane passing through $(x, 0)$ and perpendicular to x-axis is a rectangle with width $2 \sqrt{25-x^{2}}$ and height $x \tan \frac{\pi}{3}=x \sqrt{3}$. (3 marks)

Area of cross - section $=\sqrt{3} x \sqrt{25-x^{2}}$
Therefore, Required Volume $=2 \sqrt{3} \int_{0}^{5} x \sqrt{25-x^{2}} d x$
4. (a) Find the equation of line which passes through $\left(0, \frac{1}{3}, \frac{3}{4}\right)$ and lies in both the planes $2 x-4 z+3=0,4 x-3 y+1=0$.
Solution: Let \vec{N}_{1}, \vec{N}_{2} be the normals of the given planes. The required line is parallel to
$\vec{N}_{1} \times \vec{N}_{2}=\left|\begin{array}{ccc}i & j & k \\ 2 & 0 & -4 \\ 4 & -3 & 0\end{array}\right|=-12 \hat{i}-16 \hat{j}-6 \hat{k}$.
(4 marks)

Since this line passes through $\left(0, \frac{1}{3}, \frac{3}{4}\right)$, its equation is
$\frac{x-0}{-12}=\frac{y-\frac{1}{3}}{-16}=\frac{z-\frac{3}{4}}{-6}$. (3 marks)
(b) Reparametrize the curve $\vec{r}(t)=2 \cos t \hat{i}+2 \sin t \hat{j}+\sqrt{5} t \hat{k}, 0 \leq t \leq 2 \pi$, in terms of arc-length. Also determine unit tangent vector and unit normal vectors of this curve in terms of arc-length parameter.
Solution: $s(t)=\int_{0}^{t} \sqrt{4 \sin ^{2} t+4 \cos ^{2} t+5}=3 t$
$\Rightarrow \vec{r}(s)=\left(2 \cos \frac{s}{3}\right) \hat{i}+\left(2 \sin \frac{s}{3}\right) \hat{j}+\left(\sqrt{5} \frac{s}{3}\right) \hat{k}$ is the required parametric equation in terms of arc-length.

Unit Tangent Vector in terms of arc-length is given by
$\vec{T}(s)=\vec{r}^{\prime}(s)=\left(-\frac{2}{3} \sin \frac{s}{3}\right) \hat{i}+\left(\frac{2}{3} \cos \frac{s}{3}\right) \hat{j}+\left(\frac{\sqrt{5}}{3}\right) \hat{k}$
Unit Normal Vectors in terms of arc-length are given by
$\hat{n}(s)= \pm \frac{\vec{T}^{\prime}(s)}{\left|\vec{T}^{\prime}(s)\right|}=\mp\left[\left(\cos \frac{s}{3}\right) \hat{i}+\left(\sin \frac{s}{3}\right) \hat{j}\right]$

Department of Mathematics and Statistics
 Indian Institute of Technology Kanpur
 MTH101A, End Semester Examination Grading Scheme
 April 30, 2013

Marks: 100
Time: 3 Hours
Answer all questions. All the parts of each question must be answered in continuation; otherwise they will not be graded.
5. (a) Using Lagrange Multiplier Method, maximize the function $f(x, y, z)=x y z$ subject to the constraint $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, where a, b and c are positive constants.
Solution: Let $g(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1$
$\vec{\nabla} f=\lambda \vec{\nabla} g \Rightarrow y z=\frac{2 \lambda x}{a^{2}}, x z=\frac{2 \lambda y}{b^{2}}, y x=\frac{2 \lambda z}{c^{2}}$
(2 marks)

$$
\begin{equation*}
\Rightarrow 3 x y z=2 \lambda \Rightarrow \lambda=\frac{3}{2} x y z \tag{2marks}
\end{equation*}
$$

Therefore, $y z=\frac{2 \lambda x}{a^{2}} \Rightarrow y z=\frac{3 x^{2} y z}{a^{2}} \Rightarrow x= \pm \frac{a}{\sqrt{3}}$. Similarly, $y= \pm \frac{b}{\sqrt{3}}, z= \pm \frac{c}{\sqrt{3}}$
(2 marks)
$\Rightarrow \max f(x, y, z)=\frac{a b c}{3 \sqrt{3}}$
(b) Express the surface area of portion of sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=2 x$ in the form of a double integral with suitable limits.
Solution: Surface area of the sphere $=2$ surface area of the graph of $z=f(x, y) \equiv \sqrt{4-x^{2}-y^{2}}$
Required surface area $=2 \iint_{T} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y$, where T is the projection of required surface area on $x y$-plane .
\Rightarrow Required surface area $=2 \iint_{T} \frac{2}{\sqrt{4-x^{2}-y^{2}}} d x d y$

$$
\begin{equation*}
=2 \int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} \frac{2}{\sqrt{4-r^{2}}} r d r d \theta \tag{2marks}
\end{equation*}
$$

6. (a) Find equation of the surface generated by the normals to the surface $x+3 y z+2 x y z^{2}=0$ at all points of y-axis .
Solution: The normal to given surface is $\vec{N}=\left(1+2 y z^{2}, 3 z+2 x z^{2}, 3 y+4 x y z\right) \quad$ (2 marks)
$\Rightarrow \vec{N}=(1,0,3 t)$ at an arbitrary point $(0, t, 0)$ of y-axis
\Rightarrow For any point (x, y, z) on the required surface, $\frac{x}{1}=\frac{z}{3 t}, y=t$
(2 marks)
\Rightarrow Equation of Required surface: $z=3 x y$.
(b) Let $f(x, y)=\frac{y}{|y|} \sqrt{x^{2}+y^{2}}$, if $y \neq 0$ and $f(x, 0)=0$. Show that (i) $f(x, y)$ has all directional derivatives at $(0,0)$ (ii) $f(x, y)$ is not differentiable at $(0,0)$.

Solution: For $\left\|\left(u_{1}, u_{2}\right)\right\|=1, \lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)}{t}=0$, if $u_{2}=0$ and $\lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)}{t}=\frac{u_{2}}{\left|u_{2}\right|}$, if $u_{2} \neq 0$.
$\Rightarrow f(x, y)$ has all directional derivatives at $(0,0)$
(3 marks)
Since $f_{x}(0,0)=0, f_{y}(0,0)=1$, with $\alpha=(0,1)$, let

$$
\begin{equation*}
\varepsilon(h, k)=\frac{f(h, k)-f(0,0)-\alpha \cdot(h, k)}{\|(h, k)\|}=\frac{\frac{k}{|k|} \sqrt{h^{2}+k^{2}}-k}{\sqrt{h^{2}+k^{2}}} \tag{1mark}
\end{equation*}
$$

Since $\varepsilon(k, k)=\frac{(\sqrt{2}-1) k}{\sqrt{2}|k|}$ does not tend to 0 as $k \rightarrow 0, \quad \varepsilon(h, k)$ does not tend to 0 as $(h, k) \rightarrow(0,0)$. Therefore $f(x, y)$ is not differentiable at $(0,0)$.
7. (a) Determine the points of maxima, minima and saddle points for the function $f(x, y)=4 x y-x^{4}-y^{4}$.
Solution: $f_{x}=4 y-4 x^{3}, f_{y}=4 x-4 y^{3}$ so that $f_{x}=f_{y}=0 \Rightarrow(x, y)=(0,0),(1,1)$ or $(-1,-1) . \quad(2$ marks $)$
$f_{x x}=-12 x^{2}, f_{y y}=-12 y^{2}, f_{x y}=4, D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=12 \times 12 x^{2} y^{2}-16$
$\Rightarrow D>0$ and $f_{x x}<0$ at $(1,1)$ and $(-1,-1) \Rightarrow f(x, y)$ has maxima at $(1,1)$ and $(-1,-1)$
$D<0$ at $(0,0) \Rightarrow f(x, y)$ has saddle point at $(0,0)$.
(b) Using Green's theorem evaluate $\oint_{L}\left(-y \sec ^{2}(x-1) \hat{i}+\left(y^{2}+1\right) \hat{j}\right) \cdot d \vec{R}$, where L is the square with vertices at $(0,0),(2,0),(2,2),(0,2)$ described counter clockwise .

Solution.

$$
\begin{align*}
& \oint_{C} \vec{F} \cdot d \vec{R}=\iint_{D}(\operatorname{Curl} \vec{F} \cdot \hat{k}) d x d y=\int_{0}^{2} \int_{0}^{2} \sec ^{2}(x-1) d x d y \\
& =(2 \tan 1) \int_{0}^{2} d y=4 \tan 1 \tag{2marks}
\end{align*} \quad(2+2 \text { marks })
$$

8. (a) State Stoke's Theorem precisely. Using this theorem evaluate, $\oint_{C} \vec{\nabla} f . d \vec{R}$, where $f(x, y, z)=\sin x-3 \cos y+z^{5} \quad$ and $C: 3 x^{2}+2 y^{2}=6, z=2 \quad$ is the curve oriented counter clockwise.

Solution: Statement of Stoke's Theorem
$\operatorname{curl} \vec{\nabla} f=0$
$\oint_{C} \vec{\nabla} f \cdot d \vec{r}=\iint_{S} \operatorname{Cur} \vec{\nabla} f \cdot \hat{n} d S=0$
(2 marks)
(3 marks)
(b) Let \boldsymbol{G} be the domain bounded by the hemisphere $x^{2}+(y-2)^{2}+z^{2}=25$ and the plane $y=2$. Let $\vec{F}(x, y, z)=x \hat{i}+(y-2) \hat{j}+5 z \hat{k}$. Use Gauss Divergence Theorem to evaluate $\iint_{S} \vec{F} . \hat{n} d \sigma$, where \hat{n} is unit outward normal to the bounding surface S of domain G.

Solution:
By Gauss Divergence Theorem,
$\iint_{S} \vec{F} \cdot \hat{n} d \sigma=\iiint_{G} D i v \vec{F} d V=\iiint_{G} 7 d V$
$\begin{array}{ll}=7 \times \text { Volume of the Hemisphere } & (2 \text { marks }) \\ =7 \times \frac{2}{3} \pi \times 5^{3} & (2 \text { marks })\end{array}$

